Lecture 29

Uniform Circuits, TMs with Advice, Karp-Lipton Theorem

Definition: A circuit family $\{C_n\}$ is **P-uniform**

Definition: A circuit family $\{C_n\}$ is P-uniform if there is a polynomial-time TM that on input 1^n outputs the description of the circuit C_n .

outputs the description of the circuit C_n .

Theorem: A language L is computable by a **P-uniform** circuit family iff $L \in \mathbf{P}$.

outputs the description of the circuit C_n .

Theorem: A language L is computable by a **P-uniform** circuit family iff $L \in \mathbf{P}$. **Proof:**

outputs the description of the circuit C_n .

Theorem: A language L is computable by a **P-uniform** circuit family iff $L \in \mathbf{P}$. **Proof:** (\implies) Let L be a language computable by a **P-uniform** circuit family.

- **Definition:** A circuit family $\{C_n\}$ is P-uniform if there is a polynomial-time TM that on input 1^n outputs the description of the circuit C_n .
- **Theorem:** A language L is computable by a **P-uniform** circuit family iff $L \in \mathbf{P}$. **Proof:** (\implies) Let L be a language computable by a **P-uniform** circuit family. Polytime TM *M* that decides *L* on input *x*:

- **Definition:** A circuit family $\{C_n\}$ is P-uniform if there is a polynomial-time TM that on input 1^n outputs the description of the circuit C_n .
- **Theorem:** A language L is computable by a **P-uniform** circuit family iff $L \in \mathbf{P}$. **Proof:** (\implies) Let L be a language computable by a **P-uniform** circuit family. Polytime TM M that decides L on input x: Generates $C_{|x|}$ and outputs $C_{|x|}(x)$.

- **Definition:** A circuit family $\{C_n\}$ is P-uniform if there is a polynomial-time TM that on input 1^n outputs the description of the circuit C_n .
- **Theorem:** A language L is computable by a **P-uniform** circuit family iff $L \in \mathbf{P}$. **Proof:** (\implies) Let L be a language computable by a **P-uniform** circuit family. Polytime TM M that decides L on input x: Generates $C_{|x|}$ and outputs $C_{|x|}(x)$.

$$(\Leftarrow)$$

- **Definition:** A circuit family $\{C_n\}$ is P-uniform if there is a polynomial-time TM that on input 1^n outputs the description of the circuit C_n .
- **Theorem:** A language L is computable by a **P-uniform** circuit family iff $L \in \mathbf{P}$. **Proof:** (\implies) Let L be a language computable by a **P-uniform** circuit family. Polytime TM M that decides L on input x: Generates $C_{|x|}$ and outputs $C_{|x|}(x)$.
 - (\Leftarrow) Idea: Circuit construction in proof of $P \subseteq P_{/poly}$ is doable in polynomial time.

- **Definition:** A circuit family $\{C_n\}$ is P-uniform if there is a polynomial-time TM that on input 1^n outputs the description of the circuit C_n .
- **Theorem:** A language L is computable by a P-uniform circuit family iff $L \in P$. **Proof:** (\implies) Let L be a language computable by a **P-uniform** circuit family. Polytime TM M that decides L on input x: Generates $C_{|x|}$ and outputs $C_{|x|}(x)$.
 - (\Leftarrow) Idea: Circuit construction in proof of $P \subseteq P_{/poly}$ is doable in polynomial time.

Definition: A circuit family $\{C_n\}$ is **logspace-uniform** if there is an implicitly logspace computable

function f that maps 1^n to the description of the circuit C_n .

Definition: A circuit family $\{C_n\}$ is logspace-uniform if there is an implicitly logspace computable

function f that maps 1^n to the description of the circuit C_n .

Theorem: A language L is computable by a logspace-uniform circuit family iff $L \in \mathbf{P}$.

- **Definition:** A circuit family $\{C_n\}$ is logspace-uniform if there is an implicitly logspace computable

function f that maps 1^n to the description of the circuit C_n .

Theorem: A language L is computable by a logspace-uniform circuit family iff $L \in \mathbf{P}$. **Proof:** (\implies)

- **Definition:** A circuit family $\{C_n\}$ is logspace-uniform if there is an implicitly logspace computable

function f that maps 1^n to the description of the circuit C_n .

Theorem: A language L is computable by a logspace-uniform circuit family iff $L \in \mathbf{P}$. **Proof:** (\implies) Similar to the proof of the previous theorem.

- **Definition:** A circuit family $\{C_n\}$ is logspace-uniform if there is an implicitly logspace computable

function f that maps 1^n to the description of the circuit C_n .

Theorem: A language L is computable by a logspace-uniform circuit family iff $L \in \mathbf{P}$. **Proof:** (\implies) Similar to the proof of the previous theorem. (\Leftarrow)

- **Definition:** A circuit family $\{C_n\}$ is logspace-uniform if there is an implicitly logspace computable

function f that maps 1^n to the description of the circuit C_n .

Theorem: A language L is computable by a **logspace-uniform** circuit family iff $L \in \mathbf{P}$. **Proof:** (\implies) Similar to the proof of the previous theorem.

- **Definition:** A circuit family $\{C_n\}$ is logspace-uniform if there is an implicitly logspace computable

 - (\Leftarrow) We use the fact that circuit construction in $P \subseteq P_{/poly}$ is logspace computable.

function f that maps 1^n to the description of the circuit C_n .

Theorem: A language L is computable by a **logspace-uniform** circuit family iff $L \in \mathbf{P}$. **Proof:** (\implies) Similar to the proof of the previous theorem.

- **Definition:** A circuit family $\{C_n\}$ is logspace-uniform if there is an implicitly logspace computable

 - (\Leftarrow) We use the fact that circuit construction in $P \subseteq P_{/poly}$ is logspace computable.

Idea: An advice α_n for a TM on all inputs of length n.

Idea: An advice α_n for a TM on all inputs of length n.

Definition: Let $T, A : \mathbb{N} \to \mathbb{N}$ be functions.

Idea: An advice α_n for a TM on all inputs of length n.

Idea: An advice α_n for a TM on all inputs of length *n*.

Idea: An advice α_n for a TM on all inputs of length *n*.

Definition: Let $T, A : \mathbb{N} \to \mathbb{N}$ be functions. A language L is in $\mathsf{DTIME}(T(n))/A(n)$, if $\exists a T(n)$ -time

 $\mathsf{TM}\,M$

Idea: An advice α_n for a TM on all inputs of length n.

Definition: Let $T, A : \mathbb{N} \to \mathbb{N}$ be functions. A language L is in $\mathsf{DTIME}(T(n))/A(n)$, if $\exists a T(n)$ -time

TM M and sequence of strings $\{\alpha_n\}_{n \in \mathbb{N}}$

Idea: An advice α_n for a TM on all inputs of length *n*.

TM M and sequence of strings $\{\alpha_n\}_{n \in \mathbb{N}}$ with $\alpha_n \in \{0,1\}^{A(n)}$

Idea: An advice α_n for a TM on all inputs of length *n*.

TM M and sequence of strings $\{\alpha_n\}_{n\in\mathbb{N}}$ with $\alpha_n \in \{0,1\}^{A(n)}$ such that $\forall x \in \{0,1\}^n$,

Idea: An advice α_n for a TM on all inputs of length *n*.

TM M and sequence of strings $\{\alpha_n\}_{n\in\mathbb{N}}$ with $\alpha_n \in \{0,1\}^{A(n)}$ such that $\forall x \in \{0,1\}^n$,

 $x \in L \iff M(x, \alpha_n) = 1$

Idea: An advice α_n for a TM on all inputs of length n.

 $x \in L \iff M(x, \alpha_n) = 1$

Example: UHALT is has a time TM with advice strings of length .

Definition: Let $T, A : \mathbb{N} \to \mathbb{N}$ be functions. A language L is in $\mathsf{DTIME}(T(n))/A(n)$, if $\exists a T(n)$ -time TM M and sequence of strings $\{\alpha_n\}_{n\in\mathbb{N}}$ with $\alpha_n \in \{0,1\}^{A(n)}$ such that $\forall x \in \{0,1\}^n$,

Idea: An advice α_n for a TM on all inputs of length n.

Definition: Let $T, A : \mathbb{N} \to \mathbb{N}$ be functions. A language L is in $\mathsf{DTIME}(T(n))/A(n)$, if $\exists a T(n)$ -time TM M and sequence of strings $\{\alpha_n\}_{n\in\mathbb{N}}$ with $\alpha_n \in \{0,1\}^{A(n)}$ such that $\forall x \in \{0,1\}^n$, $x \in L \iff M(x, \alpha_n) = 1$

Example: UHALT is has a linear time TM with advice strings of length.

Idea: An advice α_n for a TM on all inputs of length n.

Definition: Let $T, A : \mathbb{N} \to \mathbb{N}$ be functions. A language L is in $\mathsf{DTIME}(T(n))/A(n)$, if $\exists a T(n)$ -time TM M and sequence of strings $\{\alpha_n\}_{n\in\mathbb{N}}$ with $\alpha_n \in \{0,1\}^{A(n)}$ such that $\forall x \in \{0,1\}^n$, $x \in L \iff M(x, \alpha_n) = 1$

Example: UHALT is has a linear time TM with advice strings of length 1.

Idea: An advice α_n for a TM on all inputs of length n.

Definition: Let $T, A : \mathbb{N} \to \mathbb{N}$ be functions. A language L is in $\mathsf{DTIME}(T(n))/A(n)$, if $\exists a T(n)$ -time TM M and sequence of strings $\{\alpha_n\}_{n\in\mathbb{N}}$ with $\alpha_n \in \{0,1\}^{A(n)}$ such that $\forall x \in \{0,1\}^n$, $x \in L \iff M(x, \alpha_n) = 1$

Example: UHALT is has a linear time TM with advice strings of length 1.

TM *M* that decides *UHALT* on input *x*:

Idea: An advice α_n for a TM on all inputs of length n.

Definition: Let $T, A : \mathbb{N} \to \mathbb{N}$ be functions. A language L is in $\mathsf{DTIME}(T(n))/A(n)$, if $\exists a T(n)$ -time TM M and sequence of strings $\{\alpha_n\}_{n\in\mathbb{N}}$ with $\alpha_n \in \{0,1\}^{A(n)}$ such that $\forall x \in \{0,1\}^n$, $x \in L \iff M(x, \alpha_n) = 1$

Example: UHALT is has a linear time TM with advice strings of length 1.

TM *M* that decides *UHALT* on input *x*:

1) Rejects if x is not all 1s.

Idea: An advice α_n for a TM on all inputs of length n.

Definition: Let $T, A : \mathbb{N} \to \mathbb{N}$ be functions. A language L is in $\mathsf{DTIME}(T(n))/A(n)$, if $\exists a T(n)$ -time TM M and sequence of strings $\{\alpha_n\}_{n\in\mathbb{N}}$ with $\alpha_n \in \{0,1\}^{A(n)}$ such that $\forall x \in \{0,1\}^n$, $x \in L \iff M(x, \alpha_n) = 1$

Example: UHALT is has a linear time TM with advice strings of length 1.

TM *M* that decides *UHALT* on input *x*:

1) Rejects if x is not all 1s.

2) Accepts when x is all 1s if and only if advice is 1.

Theorem: $P_{\text{poly}} = \bigcup_{c,d} \text{DTIME}(n^c)/n^d$.

Theorem: $P_{\text{poly}} = \bigcup_{c,d} \text{DTIME}(n^c)/n^d$. **Proof:**

Theorem: $P_{\text{/poly}} = \bigcup_{c,d} \text{DTIME}(n^c)/n^d$. **Proof:** $P_{\text{/poly}} \subseteq \bigcup_{c,d} \text{DTIME}(n^c)/n^d$:

Theorem: $P_{\text{/poly}} = \bigcup_{c,d} \text{DTIME}(n^c)/n^d$. **Proof:** $P_{\text{/poly}} \subseteq \bigcup_{c,d} \text{DTIME}(n^c)/n^d$: Let $L \in P_{\text{/poly}}$

Theorem: $P_{\text{poly}} = \bigcup_{c,d} \text{DTIME}(n^c)/n^d$.

Proof: $P_{\text{poly}} \subseteq \bigcup_{c,d} \text{DTIME}(n^c)/n^d$:

Let $L \in P_{\text{poly}}$ and $\{C_n\}$ be its polysize circuit family.

Theorem: $P_{poly} = \bigcup_{c,d} DTIME(n^c)/n^d$. **Proof:** $P_{poly} \subseteq \bigcup_{c,d} DTIME(n^c)/n^d$: Let $L \in P_{poly}$ and $\{C_n\}$ be its polysize circuit family. Polynomial-time TM *M* that decides *L* on input *x* and advice

Theorem: $P_{\text{/poly}} = \bigcup_{c,d} DTIME(n^c)/n^d$. **Proof:** $P_{\text{/poly}} \subseteq \bigcup_{c,d} DTIME(n^c)/n^d$: Let $L \in P_{\text{/poly}}$ and $\{C_n\}$ be its polysize circuit family. Polynomial-time TM *M* that decides *L* on input *x* and advice $C_{|x|}$

Theorem: $P_{\text{/poly}} = \bigcup_{c,d} DTIME(n^c)/n^d$. **Proof:** $P_{\text{/poly}} \subseteq \bigcup_{c,d} DTIME(n^c)/n^d$: Let $L \in P_{\text{/poly}}$ and $\{C_n\}$ be its polysize circuit family. Polynomial-time TM *M* that decides *L* on input *x* and advice $C_{|x|}$ outputs $C_{|x|}(x)$.

Theorem: $P_{poly} = \bigcup_{c,d} DTIME(n^c)/n^d$. **Proof:** $P_{poly} \subseteq \bigcup_{c,d} DTIME(n^c)/n^d$: Let $L \in P_{poly}$ and $\{C_n\}$ be its polysize circuit family. Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$. $\bigcup_{c,d} DTIME(n^c)/n^d \subseteq P_{poly}$:

Theorem: $P_{\text{/poly}} = \bigcup_{c,d} DTIME(n^c)/n^d$. **Proof:** $P_{\text{/poly}} \subseteq \bigcup_{c,d} DTIME(n^c)/n^d$: Let $L \in P_{\text{/poly}}$ and $\{C_n\}$ be its polysize circuit family. Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$. $\bigcup_{c,d} DTIME(n^c)/n^d \subseteq P_{\text{/poly}}$: Let $L \in \bigcup_{c,d} DTIME(n^c)/n^d$

Theorem: $P_{\text{/poly}} = \bigcup_{c,d} DTIME(n^c)/n^d$. **Proof:** $P_{\text{/poly}} \subseteq \bigcup_{c,d} DTIME(n^c)/n^d$: Let $L \in P_{\text{/poly}}$ and $\{C_n\}$ be its polysize circuit family. Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$. $\bigcup_{c,d} DTIME(n^c)/n^d \subseteq P_{\text{/poly}}$: Let $L \in \bigcup_{c,d} DTIME(n^c)/n^d$ and M be its polytime TM with advice string sequence $\{a_n\}$.

Theorem: $P_{\text{poly}} = \bigcup_{c,d} \text{DTIME}(n^c)/n^d$. **Proof:** $P_{\text{poly}} \subseteq \bigcup_{c,d} \text{DTIME}(n^c)/n^d$: Let $L \in P_{\text{poly}}$ and $\{C_n\}$ be its polysize circuit family. Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$. $\cup_{c,d} \mathsf{DTIME}(n^c)/n^d \subseteq \mathsf{P}_{\mathsf{poly}}$: Let $L \in \bigcup_{c,d} \mathsf{DTIME}(n^c)/n^d$ and M be its polytime TM with advice string sequence $\{\alpha_n\}$. There exists a polysize circuit D_n such that $\forall x \in \{0,1\}^n$ and $\forall \alpha \in \{0,1\}^{poly(n)}$

Theorem: $P_{\text{poly}} = \bigcup_{c,d} \text{DTIME}(n^c)/n^d$. **Proof:** $P_{\text{poly}} \subseteq \bigcup_{c,d} \text{DTIME}(n^c)/n^d$: Let $L \in P_{\text{poly}}$ and $\{C_n\}$ be its polysize circuit family. Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$. $\cup_{c,d} \mathsf{DTIME}(n^c)/n^d \subseteq \mathsf{P}_{\mathsf{poly}}$: Let $L \in \bigcup_{c,d} \mathsf{DTIME}(n^c)/n^d$ and M be its polytime TM with advice string sequence $\{\alpha_n\}$. There exists a polysize circuit D_n such that $\forall x \in \{0,1\}^n$ and $\forall \alpha \in \{0,1\}^{poly(n)}$ $M(x, \alpha) = D_{\nu}(x, \alpha)$

Theorem: $P_{\text{poly}} = \bigcup_{c,d} \text{DTIME}(n^c)/n^d$. **Proof:** $P_{\text{poly}} \subseteq \bigcup_{c,d} \text{DTIME}(n^c)/n^d$: Let $L \in P_{\text{poly}}$ and $\{C_n\}$ be its polysize circuit family. $\cup_{c,d} \mathsf{DTIME}(n^c)/n^d \subseteq \mathsf{P}_{\mathsf{poly}}$: $M(x, \alpha) = D_{\nu}(x, \alpha)$

Then, polysize circuit C_n for L is D_n with α_n hard-wired as second input.

Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$.

Let $L \in \bigcup_{c,d} \mathsf{DTIME}(n^c)/n^d$ and M be its polytime TM with advice string sequence $\{\alpha_n\}$. There exists a polysize circuit D_n such that $\forall x \in \{0,1\}^n$ and $\forall \alpha \in \{0,1\}^{poly(n)}$

Theorem: $P_{\text{poly}} = \bigcup_{c,d} \text{DTIME}(n^c)/n^d$. **Proof:** $P_{\text{poly}} \subseteq \bigcup_{c,d} \text{DTIME}(n^c)/n^d$: Let $L \in P_{\text{poly}}$ and $\{C_n\}$ be its polysize circuit family. $\cup_{c,d} \mathsf{DTIME}(n^c)/n^d \subseteq \mathsf{P}_{\mathsf{poly}}$: $M(x, \alpha) = D_{\nu}(x, \alpha)$

Then, polysize circuit C_n for L is D_n with α_n hard-wired as second input.

Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$.

Let $L \in \bigcup_{c,d} \mathsf{DTIME}(n^c)/n^d$ and M be its polytime TM with advice string sequence $\{\alpha_n\}$. There exists a polysize circuit D_n such that $\forall x \in \{0,1\}^n$ and $\forall \alpha \in \{0,1\}^{poly(n)}$

Theorem: If $NP \subseteq P_{\text{poly}}$, then $PH = \Sigma_2^p$.

Theorem: If $NP \subseteq P_{\text{poly}}$, then $PH = \Sigma_2^p$.

Proof:

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: We will prove that if $SAT \in P_{\text{poly}}$, then $\Pi_2^p \subseteq \Sigma_2^p$.

Theorem: If $NP \subseteq P_{\text{poly}}$, then $PH = \Sigma_2^p$.

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC \subseteq C \Longrightarrow C = coC.)

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC \subseteq C \Longrightarrow C = coC.)

Let $L \in \Pi_2^p$.

Theorem: If NP \subseteq P_{/poly}, then PH = Σ_2^p .

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC \subseteq C \Longrightarrow C = coC.)

Let $L \in \Pi_2^p$. Then, \exists a polytime TM M such that

Theorem: If NP \subseteq P_{/poly}, then PH = Σ_2^p .

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC \subseteq C \Longrightarrow C = coC.)

Let $L \in \Pi_2^p$. Then, \exists a polytime TM M such that

 $x \in L \iff \forall u_1 \exists u_2 \text{ such that } M(x, u_1, u_2) = 1$

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

- **Proof:** We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC $\subseteq C \implies C = coC$.)
 - Let $L \in \Pi_2^p$. Then, \exists a polytime TM M such that
 - $x \in L \iff \forall u_1 \exists u_2 \text{ such that } M(x, u_1, u_2) = 1$
 - Define a related language L'

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC $\subseteq C \implies C = coC$.)

Let $L \in \Pi_2^p$. Then, \exists a polytime TM M such that

 $x \in L \iff \forall u_1 \exists u_2 \text{ such that } M(x, u_1, u_2) = 1$

Define a related language L'

 $(x, u_1) \in L' \iff \exists u_2 \text{ s.t. } M(x)$

$$(x, u_1, u_2) = 1$$

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC $\subseteq C \implies C = coC$.)

Let $L \in \Pi_2^p$. Then, \exists a polytime TM M such that

 $x \in L \iff \forall u_1 \exists u_2 \text{ such that } M(x, u_1, u_2) = 1$

Define a related language L'

 $(x, u_1) \in L' \iff \exists u_2 \text{ s.t. } M(x)$

 $L' \in \mathsf{NP}.$

$$(x, u_1, u_2) = 1$$

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC $\subseteq C \implies C = coC$.) Let $L \in \Pi_2^p$. Then, \exists a polytime TM M such that

 $x \in L \iff \forall u_1 \exists u_2 \text{ such that } M(x, u_1, u_2) = 1$

Define a related language L'

 $(x, u_1) \in L' \iff \exists u_2 \text{ s.t. } M(x)$

 $L' \in \mathbb{NP}$. Let f be the function reducing L' to SAT.

$$(x, u_1, u_2) = 1$$

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC \subseteq C \Longrightarrow C = coC.) Let $L \in \Pi_2^p$. Then, \exists a polytime TM M such that

 $x \in L \iff \forall u_1 \exists u_2 \text{ such that } M(x, u_1, u_2) = 1$

Define a related language L'

 $(x, u_1) \in L' \iff \exists u_2 \text{ s.t. } M(x)$

 $L' \in \mathbb{NP}$. Let f be the function reducing L' to SAT.

Going back to L:

$$(x, u_1, u_2) = 1$$

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC $\subseteq C \implies C = coC$.) Let $L \in \Pi_2^p$. Then, \exists a polytime TM M such that

 $x \in L \iff \forall u_1 \exists u_2 \text{ such that } M(x, u_1, u_2) = 1$

Define a related language L'

 $(x, u_1) \in L' \iff \exists u_2 \text{ s.t. } M(x)$

 $L' \in \mathbb{NP}$. Let f be the function reducing L' to SAT.

Going back to L:

 $x \in L \iff \forall u_1 (x, u_1) \in L'$

$$(x, u_1, u_2) = 1$$

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC $\subseteq C \implies C = coC$.) Let $L \in \Pi_2^p$. Then, \exists a polytime TM M such that

 $x \in L \iff \forall u_1 \exists u_2 \text{ such that } M(x, u_1, u_2) = 1$

Define a related language L'

 $(x, u_1) \in L' \iff \exists u_2 \text{ s.t. } M(x)$

 $L' \in \mathbb{NP}$. Let f be the function reducing L' to SAT.

Going back to L:

 $x \in L \iff \forall u_1(x, u_1) \in L' \iff \forall u_1 f(x, u_1) \in SAT$

$$(x, u_1, u_2) = 1$$

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC $\subseteq C \implies C = coC$.) Let $L \in \Pi_2^p$. Then, \exists a polytime TM M such that

 $x \in L \iff \forall u_1 \exists u_2 \text{ such that } M(x, u_1, u_2) = 1$

Define a related language L'

 $(x, u_1) \in L' \iff \exists u_2 \text{ s.t. } M(x)$

 $L' \in \mathbb{NP}$. Let f be the function reducing L' to SAT.

Going back to L:

$$(x, u_1, u_2) = 1$$

$x \in L \iff \forall u_1(x, u_1) \in L' \iff \forall u_1 f(x, u_1) \in SAT \iff \exists C \forall u_1 C(f(x, u_1)) = 1$

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC $\subseteq C \implies C = coC$.) Let $L \in \Pi_2^p$. Then, \exists a polytime TM M such that

 $x \in L \iff \forall u_1 \exists u_2 \text{ such that } M(x, u_1, u_2) = 1$

Define a related language L'

 $(x, u_1) \in L' \iff \exists u_2 \text{ s.t. } M(x)$

 $L' \in \mathbb{NP}$. Let f be the function reducing L' to SAT.

Going back to L:

 $x \in L \iff \forall u_1(x, u_1) \in L' \iff \forall u_1 f(x, u_1) \in SAT \iff \exists C \forall u_1 C(f(x, u_1)) = 1$ $(:: SAT \in \mathsf{P}_{\mathsf{/poly}})$

$$(x, u_1, u_2) = 1$$

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC $\subseteq C \implies C = coC$.) Let $L \in \Pi_2^p$. Then, \exists a polytime TM M such that

 $x \in L \iff \forall u_1 \exists u_2 \text{ such that } M(x, u_1, u_2) = 1$

Define a related language L'

 $(x, u_1) \in L' \iff \exists u_2 \text{ s.t. } M(x)$

 $L' \in \mathbb{NP}$. Let f be the function reducing L' to SAT.

Going back to L:

 $x \in L \iff \forall u_1(x, u_1) \in L' \iff \forall u_1 f(x, u_1) \in SAT \iff \exists C \forall u_1 C(f(x, u_1)) = 1$ $(:: SAT \in \mathsf{P}_{\mathsf{/poly}})$

$$(x, u_1, u_2) = 1$$
Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: We will prove that if $SAT \in P_{poly}$, then $\Pi_2^p \subseteq \Sigma_2^p$. (coC $\subseteq C \implies C = coC$.) Let $L \in \Pi_2^p$. Then, \exists a polytime TM M such that $x \in L \iff \forall u_1 \exists u_2 \text{ such that } M(x, u_1, u_2) = 1$

Define a related language L'

 $(x, u_1) \in L' \iff \exists u_2 \text{ s.t. } M(x)$

 $L' \in \mathbb{NP}$. Let f be the function reducing L' to SAT.

Going back to L:

$$(x, u_1, u_2) = 1$$

Flaw: There might be a círcuít C s.t. $C(f(x, u_1)) = 1$ even if $f(x, u_1) \notin SAT$.

 $x \in L \iff \forall u_1(x, u_1) \in L' \iff \forall u_1 f(x, u_1) \in SAT \iff \exists C \forall u_1 C(f(x, u_1)) = 1$ $(:: SAT \in \mathsf{P}_{\mathsf{/poly}})$

Theorem: If $NP \subseteq P_{\text{poly}}$, then $PH = \Sigma_2^p$.

Proof:

Theorem: If NP \subseteq P_{/poly}, then PH = Σ_2^p .

satisfying assignment for ϕ , if ϕ is satisfiable.

Proof: Observation: If $SAT \in P_{\text{poly}}$, then a polysize circuit family $\{C_n\}$ s.t. $C_{|\phi|}(\phi)$ outputs a

Theorem: If NP \subseteq P_{/poly}, then PH = Σ_2^p .

Proof: Observation: If $SAT \in P_{\text{poly}}$, then a polysize circuit family $\{C_n\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ , if ϕ is satisfiable.

Theorem: If NP \subseteq P_{/poly}, then PH = Σ_2^p .

Proof: Observation: If $SAT \in P_{poly}$, then a polysize circuit family $\{C_n\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ , if ϕ is satisfiable.

Continuing with plugging:

 $x \in L \iff \forall u_1 f(x, u_1) \in SAT$

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: Observation: If $SAT \in P_{\text{poly}}$, then a polysize circuit family $\{C_n\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ , if ϕ is satisfiable.

Continuing with plugging:

 $x \in L \iff \forall u_1 f(x, u_1) \in SAT$ $\iff \exists D \forall u_1 D(f(x, u_1)) \text{ is a satisfying assignment for } f(x, u_1)$

Theorem: If $NP \subseteq P_{/poly'}$ then $PH = \Sigma_2^p$.

Proof: Observation: If $SAT \in P_{\text{poly}}$, then a polysize circuit family $\{C_n\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ , if ϕ is satisfiable.

$$x \in L \iff \forall u_1 f(x, u_1) \in SAT$$

 $\iff \exists D \forall u_1 D(f(x, u_1)) \text{ is a sa}$

- Biconditional statement is true as $\exists D = C$. State State
- stisfying assignment for $f(x, u_1)$

Theorem: If NP \subseteq P_{/poly}, then PH = Σ_2^p .

Proof: Observation: If $SAT \in P_{\text{poly}}$, then a polysize circuit family $\{C_n\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ , if ϕ is satisfiable.

$$\begin{aligned} x \in L \iff \forall u_1 f(x, u_1) \in SAT \\ \iff \exists D \forall u_1 D(f(x, u_1)) \text{ is a sa} \\ \iff \exists D \forall u_1 M(x, u_1, D) = 1 \end{aligned}$$

- Biconditional statement is true as $\exists D = C$. States and the second second
- stisfying assignment for $f(x, u_1)$

Theorem: If $NP \subseteq P_{\text{poly}}$, then $PH = \Sigma_2^p$.

Proof: Observation: If $SAT \in P_{poly}$, then a polysize circuit family $\{C_n\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ , if ϕ is satisfiable.

Continuing with plugging:

 $x \in L \iff \forall u_1 f(x, u_1) \in SAT$ $\iff \exists D \forall u_1 D(f(x, u_1)) \text{ is a satisfying assignment for } f(x, u_1)$

- Biconditional statement is true as $\exists D = C$.
- $\iff \exists D \forall u_1 M(x, u_1, D) = 1 \qquad M \text{ outputs } 1 \text{ iff } D(f(x, u_1)) \text{ is a}$ satisfying assignment for $f(x, u_1)$.

Theorem: If $NP \subseteq P_{\text{poly}}$, then $PH = \Sigma_2^p$.

Proof: Observation: If $SAT \in P_{\text{poly}}$, then a polysize circuit family $\{C_n\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ , if ϕ is satisfiable.

$$\begin{aligned} x \in L \iff \forall u_1 f(x, u_1) \in SAT \\ \iff \exists D \forall u_1 D(f(x, u_1)) \text{ is a sat} \\ \iff \exists D \forall u_1 M(x, u_1, D) = 1 \end{aligned}$$

Thus,
$$L \in \Sigma_2^p$$

- Biconditional statement is true as $\exists D = C$. and the second se
- itisfying assignment for $f(x, u_1)$
- Montputs 1 iff $D(f(x, u_1))$ is a satisfying assignment for $f(x, u_1)$.

Theorem: If $NP \subseteq P_{\text{poly}}$, then $PH = \Sigma_2^p$.

Proof: Observation: If $SAT \in P_{\text{poly}}$, then a polysize circuit family $\{C_n\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ , if ϕ is satisfiable.

$$\begin{aligned} x \in L \iff \forall u_1 f(x, u_1) \in SAT \\ \iff \exists D \forall u_1 D(f(x, u_1)) \text{ is a sat} \\ \iff \exists D \forall u_1 M(x, u_1, D) = 1 \end{aligned}$$

Thus,
$$L \in \Sigma_2^p$$

- Biconditional statement is true as $\exists D = C$. and the second se
- itisfying assignment for $f(x, u_1)$
- Montputs 1 iff $D(f(x, u_1))$ is a satisfying assignment for $f(x, u_1)$.

