Lecture 29

Uniform Circuits, TMs with Advice, Karp-Lipton Theorem

Uniformly Generated Circuits

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is P-uniform

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is P -uniform if there is a polynomial-time TM that on input 1^{n}

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is P -uniform if there is a polynomial-time TM that on input 1^{n} outputs the description of the circuit C_{n}.

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is P -uniform if there is a polynomial-time TM that on input 1^{n} outputs the description of the circuit C_{n}.

Theorem: A language L is computable by a P -uniform circuit family iff $L \in \mathrm{P}$.

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is P -uniform if there is a polynomial-time TM that on input 1^{n} outputs the description of the circuit C_{n}.

Theorem: A language L is computable by a P -uniform circuit family iff $L \in \mathrm{P}$.
Proof:

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is P -uniform if there is a polynomial-time TM that on input 1^{n} outputs the description of the circuit C_{n}.

Theorem: A language L is computable by a P -uniform circuit family iff $L \in \mathrm{P}$.
Proof: (\Longrightarrow) Let L be a language computable by a P-uniform circuit family.

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is P -uniform if there is a polynomial-time TM that on input 1^{n} outputs the description of the circuit C_{n}.

Theorem: A language L is computable by a P -uniform circuit family iff $L \in \mathrm{P}$. Proof: (\Longrightarrow) Let L be a language computable by a P-uniform circuit family.

Polytime TM M that decides L on input x :

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is P -uniform if there is a polynomial-time TM that on input 1^{n} outputs the description of the circuit C_{n}.

Theorem: A language L is computable by a P -uniform circuit family iff $L \in \mathrm{P}$.
Proof: (\Longrightarrow) Let L be a language computable by a P-uniform circuit family.
Polytime TM M that decides L on input x : Generates $C_{|x|}$ and outputs $C_{|x|}(x)$.

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is P -uniform if there is a polynomial-time TM that on input 1^{n} outputs the description of the circuit C_{n}.

Theorem: A language L is computable by a P -uniform circuit family iff $L \in \mathrm{P}$.
Proof: (\Longrightarrow) Let L be a language computable by a P-uniform circuit family.
Polytime TM M that decides L on input x : Generates $C_{|x|}$ and outputs $C_{|x|}(x)$.

$$
(\Longleftarrow)
$$

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is P -uniform if there is a polynomial-time TM that on input 1^{n} outputs the description of the circuit C_{n}.

Theorem: A language L is computable by a P -uniform circuit family iff $L \in \mathrm{P}$.
Proof: (\Longrightarrow) Let L be a language computable by a P-uniform circuit family.
Polytime TM M that decides L on input x : Generates $C_{|x|}$ and outputs $C_{|x|}(x)$.
(\Longleftarrow) Idea: Circuit construction in proof of $\mathrm{P} \subseteq \mathrm{P}_{\text {/poly }}$ is doable in polynomial time.

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is P -uniform if there is a polynomial-time TM that on input 1^{n} outputs the description of the circuit C_{n}.

Theorem: A language L is computable by a P -uniform circuit family iff $L \in \mathrm{P}$.
Proof: (\Longrightarrow) Let L be a language computable by a P-uniform circuit family.
Polytime TM M that decides L on input x : Generates $C_{|x|}$ and outputs $C_{|x|}(x)$.
(\Longleftarrow) Idea: Circuit construction in proof of $\mathrm{P} \subseteq \mathrm{P}_{\text {/poly }}$ is doable in polynomial time.

Uniformly Generated Circuits

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is logspace-uniform if there is an implicitly logspace computable

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is logspace-uniform if there is an implicitly logspace computable function f that maps 1^{n} to the description of the circuit C_{n}.

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is logspace-uniform if there is an implicitly logspace computable function f that maps 1^{n} to the description of the circuit C_{n}.

Theorem: A language L is computable by a logspace-uniform circuit family iff $L \in \mathrm{P}$.

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is logspace-uniform if there is an implicitly logspace computable function f that maps 1^{n} to the description of the circuit C_{n}.

Theorem: A language L is computable by a logspace-uniform circuit family iff $L \in \mathrm{P}$. Proof: (\Longrightarrow)

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is logspace-uniform if there is an implicitly logspace computable function f that maps 1^{n} to the description of the circuit C_{n}.

Theorem: A language L is computable by a logspace-uniform circuit family iff $L \in \mathrm{P}$. Proof: (\Longrightarrow) Similar to the proof of the previous theorem.

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is logspace-uniform if there is an implicitly logspace computable function f that maps 1^{n} to the description of the circuit C_{n}.

Theorem: A language L is computable by a logspace-uniform circuit family iff $L \in \mathrm{P}$. Proof: (\Longrightarrow) Similar to the proof of the previous theorem.

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is logspace-uniform if there is an implicitly logspace computable function f that maps 1^{n} to the description of the circuit C_{n}.

Theorem: A language L is computable by a logspace-uniform circuit family iff $L \in \mathrm{P}$.
Proof: (\Longrightarrow) Similar to the proof of the previous theorem.
(\Longleftarrow) We use the fact that circuit construction in $\mathrm{P} \subseteq \mathrm{P}_{\text {/poly }}$ is logspace computable.

Uniformly Generated Circuits

Definition: A circuit family $\left\{C_{n}\right\}$ is logspace-uniform if there is an implicitly logspace computable function f that maps 1^{n} to the description of the circuit C_{n}.

Theorem: A language L is computable by a logspace-uniform circuit family iff $L \in \mathrm{P}$.
Proof: (\Longrightarrow) Similar to the proof of the previous theorem.
(\Longleftarrow) We use the fact that circuit construction in $\mathrm{P} \subseteq \mathrm{P}_{\text {/poly }}$ is logspace computable.

TMs with Advice

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

Definition: Let $T, A: \mathbb{N} \rightarrow \mathbb{N}$ be functions.

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

Definition: Let $T, A: \mathbb{N} \rightarrow \mathbb{N}$ be functions. A language L is in $\operatorname{DTIME}(T(n)) / A(n)$,

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.
 TM M

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

Definition: Let $T, A: \mathbb{N} \rightarrow \mathbb{N}$ be functions. A language L is in $\operatorname{DTIME}(T(n)) / A(n)$, if \exists a $T(n)$-time
TM M and sequence of strings $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

TM M and sequence of strings $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ with $\alpha_{n} \in\{0,1\}^{A(n)}$

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

TM M and sequence of strings $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ with $\alpha_{n} \in\{0,1\}^{A(n)}$ such that $\forall x \in\{0,1\}^{n}$,

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

TM M and sequence of strings $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ with $\alpha_{n} \in\{0,1\}^{A(n)}$ such that $\forall x \in\{0,1\}^{n}$,

$$
x \in L \Longleftrightarrow M\left(x, \alpha_{n}\right)=1
$$

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

Definition: Let $T, A: \mathbb{N} \rightarrow \mathbb{N}$ be functions. A language L is in $\operatorname{DTIME}(T(n)) / A(n)$, if \exists a $T(n)$-time TM M and sequence of strings $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ with $\alpha_{n} \in\{0,1\}^{A(n)}$ such that $\forall x \in\{0,1\}^{n}$,

$$
x \in L \Longleftrightarrow M\left(x, \alpha_{n}\right)=1
$$

Example: UHALT is has a \qquad time TM with advice strings of length .

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

Definition: Let $T, A: \mathbb{N} \rightarrow \mathbb{N}$ be functions. A language L is in $\operatorname{DTIME}(T(n)) / A(n)$, if \exists a $T(n)$-time
TM M and sequence of strings $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ with $\alpha_{n} \in\{0,1\}^{A(n)}$ such that $\forall x \in\{0,1\}^{n}$,

$$
x \in L \Longleftrightarrow M\left(x, \alpha_{n}\right)=1
$$

Example: UHALT is has a linear time TM with advice strings of length.

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

Definition: Let $T, A: \mathbb{N} \rightarrow \mathbb{N}$ be functions. A language L is in $\operatorname{DTIME}(T(n)) / A(n)$, if \exists a $T(n)$-time TM M and sequence of strings $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ with $\alpha_{n} \in\{0,1\}^{A(n)}$ such that $\forall x \in\{0,1\}^{n}$,

$$
x \in L \Longleftrightarrow M\left(x, \alpha_{n}\right)=1
$$

Example: UHALT is has a linear time TM with advice strings of length 1.

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

Definition: Let $T, A: \mathbb{N} \rightarrow \mathbb{N}$ be functions. A language L is in $\operatorname{DTIME}(T(n)) / A(n)$, if \exists a $T(n)$-time
TM M and sequence of strings $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ with $\alpha_{n} \in\{0,1\}^{A(n)}$ such that $\forall x \in\{0,1\}^{n}$,

$$
x \in L \Longleftrightarrow M\left(x, \alpha_{n}\right)=1
$$

Example: UHALT is has a linear time TM with advice strings of length 1.
TM M that decides UHALT on input x :

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

Definition: Let $T, A: \mathbb{N} \rightarrow \mathbb{N}$ be functions. A language L is in $\operatorname{DTIME}(T(n)) / A(n)$, if \exists a $T(n)$-time
TM M and sequence of strings $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ with $\alpha_{n} \in\{0,1\}^{A(n)}$ such that $\forall x \in\{0,1\}^{n}$,

$$
x \in L \Longleftrightarrow M\left(x, \alpha_{n}\right)=1
$$

Example: UHALT is has a linear time TM with advice strings of length 1.
TM M that decides UHALT on input x :

1) Rejects if x is not all 1 s .

TMs with Advice

Idea: An advice α_{n} for a TM on all inputs of length n.

Definition: Let $T, A: \mathbb{N} \rightarrow \mathbb{N}$ be functions. A language L is in $\operatorname{DTIME}(T(n)) / A(n)$, if \exists a $T(n)$-time
TM M and sequence of strings $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ with $\alpha_{n} \in\{0,1\}^{A(n)}$ such that $\forall x \in\{0,1\}^{n}$,

$$
x \in L \Longleftrightarrow M\left(x, \alpha_{n}\right)=1
$$

Example: UHALT is has a linear time TM with advice strings of length 1.
TM M that decides UHALT on input x :

1) Rejects if x is not all 1 s .
2) Accepts when x is all 1 s if and only if advice is 1 .

TMs with Advice

TMs with Advice

Theorem: $\mathrm{P}_{/ \text {poly }}=\cup_{c, d} \mathrm{DTIME}\left(n^{c}\right) / n^{d}$.

TMs with Advice

Theorem: $\mathrm{P}_{/ \text {poly }}=\mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof:

TMs with Advice

Theorem: $\mathrm{P}_{/ \text {poly }}=\mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof: P/poly $\subseteq \cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}:$

TMs with Advice

Theorem: $\mathrm{P}_{/ \text {poly }}=\mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof: P/poly $\subseteq \cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}:$
Let $L \in \mathrm{P}_{\text {/poly }}$

TMs with Advice

Theorem: $\mathrm{P}_{/ \text {poly }}=\mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof: P/poly $\subseteq \cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}:$
Let $L \in \mathrm{P} /$ poly and $\left\{C_{n}\right\}$ be its polysize circuit family.

TMs with Advice

Theorem: $\mathrm{P}_{/ \text {poly }}=\mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof: P/poly $\subseteq \cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}:$
Let $L \in \mathrm{P} /$ poly and $\left\{C_{n}\right\}$ be its polysize circuit family.
Polynomial-time TM M that decides L on input x and advice

TMs with Advice

Theorem: $\mathrm{P}_{/ \text {poly }}=\mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof: P/poly $\subseteq \cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}:$
Let $L \in \mathrm{P} /$ poly and $\left\{C_{n}\right\}$ be its polysize circuit family.
Polynomial-time TM M that decides L on input x and advice $C_{|x|}$

TMs with Advice

Theorem: $\mathrm{P}_{/ \text {poly }}=\mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof: P/poly $\subseteq \cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}:$
Let $L \in \mathrm{P} /$ poly and $\left\{C_{n}\right\}$ be its polysize circuit family.
Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$.

TMs with Advice

Theorem: $\mathrm{P}_{/ \text {poly }}=\mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof: P/poly $\subseteq \cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}:$
Let $L \in \mathrm{P} /$ poly and $\left\{C_{n}\right\}$ be its polysize circuit family.
Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$.
$\cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d} \subseteq \mathrm{P}_{/ \text {poly }}$

TMs with Advice

Theorem: $\mathrm{P}_{/ \text {poly }}=\mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof: P/poly $\subseteq \cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}:$
Let $L \in \mathrm{P} /$ poly and $\left\{C_{n}\right\}$ be its polysize circuit family.
Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$.
$\cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d} \subseteq \mathrm{P}_{/ \text {poly }}$
Let $L \in \mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$

TMs with Advice

Theorem: $\mathrm{P}_{/ \text {poly }}=\mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof: P/poly $\subseteq \cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}:$
Let $L \in \mathrm{P} /$ poly and $\left\{C_{n}\right\}$ be its polysize circuit family.
Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$.
$\cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d} \subseteq \mathrm{P}_{/ \text {poly }}$
Let $L \in \mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$ and M be its polytime TM with advice string sequence $\left\{\alpha_{n}\right\}$.

TMs with Advice

Theorem: $\mathrm{P}_{/ \text {poly }}=\mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof: P/poly $\subseteq \cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}:$
Let $L \in \mathrm{P}_{\text {/poly }}$ and $\left\{C_{n}\right\}$ be its polysize circuit family.
Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$.
$\cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d} \subseteq \mathrm{P}_{/ \text {poly }}$
Let $L \in \mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$ and M be its polytime TM with advice string sequence $\left\{\alpha_{n}\right\}$.
There exists a polysize circuit D_{n} such that $\forall x \in\{0,1\}^{n}$ and $\forall \alpha \in\{0,1\}^{\text {poly(}(n)}$

TMs with Advice

Theorem: $\mathrm{P}_{/ \text {poly }}=\mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof: P/poly $\subseteq \cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}:$
Let $L \in \mathrm{P} /$ poly and $\left\{C_{n}\right\}$ be its polysize circuit family.
Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$.
$\cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d} \subseteq \mathrm{P}_{/ \text {poly }}$
Let $L \in \mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$ and M be its polytime TM with advice string sequence $\left\{\alpha_{n}\right\}$.
There exists a polysize circuit D_{n} such that $\forall x \in\{0,1\}^{n}$ and $\forall \alpha \in\{0,1\}^{\text {poly(}(n)}$

$$
M(x, \alpha)=D_{n}(x, \alpha)
$$

TMs with Advice

Theorem: $\mathrm{P} /$ poly $=\cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof: P/poly $\subseteq \cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}:$
Let $L \in \mathrm{P} /$ poly and $\left\{C_{n}\right\}$ be its polysize circuit family.
Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$.
$\cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d} \subseteq \mathrm{P}_{/ \text {poly }}:$
Let $L \in \mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$ and M be its polytime TM with advice string sequence $\left\{\alpha_{n}\right\}$.
There exists a polysize circuit D_{n} such that $\forall x \in\{0,1\}^{n}$ and $\forall \alpha \in\{0,1\}^{\text {poly(}(n)}$

$$
M(x, \alpha)=D_{n}(x, \alpha)
$$

Then, polysize circuit C_{n} for L is D_{n} with α_{n} hard-wired as second input.

TMs with Advice

Theorem: $\mathrm{P} /$ poly $=\cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$.
Proof: P/poly $\subseteq \cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}:$
Let $L \in \mathrm{P} /$ poly and $\left\{C_{n}\right\}$ be its polysize circuit family.
Polynomial-time TM M that decides L on input x and advice $C_{|x|}$ outputs $C_{|x|}(x)$.
$\cup_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d} \subseteq \mathrm{P}_{/ \text {poly }}:$
Let $L \in \mathrm{U}_{c, d} \operatorname{DTIME}\left(n^{c}\right) / n^{d}$ and M be its polytime TM with advice string sequence $\left\{\alpha_{n}\right\}$.
There exists a polysize circuit D_{n} such that $\forall x \in\{0,1\}^{n}$ and $\forall \alpha \in\{0,1\}^{\text {poly(}(n)}$

$$
M(x, \alpha)=D_{n}(x, \alpha)
$$

Then, polysize circuit C_{n} for L is D_{n} with α_{n} hard-wired as second input.

Karp-Lipton Theorem

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof:

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly, }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P} /$ poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p}$.

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{\text {/poly, }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P}_{\text {/poly, }}$, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p}$. $(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{\text {/poly, }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P}_{\text {/poly, }}$ then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p}$. $(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)
Let $L \in \Pi_{2}^{p}$.

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{\text {/poly, }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P}$ /poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p} .(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)
Let $L \in \Pi_{2}^{p}$. Then, \exists a polytime TM M such that

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P} /$ poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p} .(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)
Let $L \in \Pi_{2}^{p}$. Then, \exists a polytime TM M such that

$$
x \in L \Longleftrightarrow \forall u_{1} \exists u_{2} \text { such that } M\left(x, u_{1}, u_{2}\right)=1
$$

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly, }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P}$ /poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p} .(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)
Let $L \in \Pi_{2}^{p}$. Then, \exists a polytime TM M such that

$$
x \in L \Longleftrightarrow \forall u_{1} \exists u_{2} \text { such that } M\left(x, u_{1}, u_{2}\right)=1
$$

Define a related language L^{\prime}

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P} /$ poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p} .(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)
Let $L \in \Pi_{2}^{p}$. Then, \exists a polytime TM M such that

$$
x \in L \Longleftrightarrow \forall u_{1} \exists u_{2} \text { such that } M\left(x, u_{1}, u_{2}\right)=1
$$

Define a related language L^{\prime}

$$
\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \exists u_{2} \text { s.t. } M\left(x, u_{1}, u_{2}\right)=1
$$

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P} /$ poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p} .(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)
Let $L \in \Pi_{2}^{p}$. Then, \exists a polytime TM M such that

$$
x \in L \Longleftrightarrow \forall u_{1} \exists u_{2} \text { such that } M\left(x, u_{1}, u_{2}\right)=1
$$

Define a related language L^{\prime}

$$
\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \exists u_{2} \text { s.t. } M\left(x, u_{1}, u_{2}\right)=1
$$

$$
L^{\prime} \in \mathrm{NP} .
$$

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P} /$ poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p} .(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)
Let $L \in \Pi_{2}^{p}$. Then, \exists a polytime TM M such that

$$
x \in L \Longleftrightarrow \forall u_{1} \exists u_{2} \text { such that } M\left(x, u_{1}, u_{2}\right)=1
$$

Define a related language L^{\prime}

$$
\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \exists u_{2} \text { s.t. } M\left(x, u_{1}, u_{2}\right)=1
$$

$L^{\prime} \in$ NP. Let f be the function reducing L^{\prime} to SAT.

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P} /$ poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p} .(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)
Let $L \in \Pi_{2}^{p}$. Then, \exists a polytime TM M such that

$$
x \in L \Longleftrightarrow \forall u_{1} \exists u_{2} \text { such that } M\left(x, u_{1}, u_{2}\right)=1
$$

Define a related language L^{\prime}

$$
\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \exists u_{2} \text { s.t. } M\left(x, u_{1}, u_{2}\right)=1
$$

$L^{\prime} \in N$. Let f be the function reducing L^{\prime} to SAT.
Going back to L :

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P}$ /poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p} .(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)
Let $L \in \Pi_{2}^{p}$. Then, \exists a polytime TM M such that

$$
x \in L \Longleftrightarrow \forall u_{1} \exists u_{2} \text { such that } M\left(x, u_{1}, u_{2}\right)=1
$$

Define a related language L^{\prime}

$$
\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \exists u_{2} \text { s.t. } M\left(x, u_{1}, u_{2}\right)=1
$$

$L^{\prime} \in N$. Let f be the function reducing L^{\prime} to SAT.
Going back to L :

$$
x \in L \Longleftrightarrow \forall u_{1}\left(x, u_{1}\right) \in L^{\prime}
$$

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P}$ /poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p} .(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)
Let $L \in \Pi_{2}^{p}$. Then, \exists a polytime TM M such that

$$
x \in L \Longleftrightarrow \forall u_{1} \exists u_{2} \text { such that } M\left(x, u_{1}, u_{2}\right)=1
$$

Define a related language L^{\prime}

$$
\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \exists u_{2} \text { s.t. } M\left(x, u_{1}, u_{2}\right)=1
$$

$L^{\prime} \in$ NP. Let f be the function reducing L^{\prime} to SAT.
Going back to L :

$$
x \in L \Longleftrightarrow \forall u_{1}\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \forall u_{1} f\left(x, u_{1}\right) \in S A T
$$

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P}$ /poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p} .(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)
Let $L \in \Pi_{2}^{p}$. Then, \exists a polytime TM M such that

$$
x \in L \Longleftrightarrow \forall u_{1} \exists u_{2} \text { such that } M\left(x, u_{1}, u_{2}\right)=1
$$

Define a related language L^{\prime}

$$
\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \exists u_{2} \text { s.t. } M\left(x, u_{1}, u_{2}\right)=1
$$

$L^{\prime} \in$ NP. Let f be the function reducing L^{\prime} to SAT.
Going back to L :

$$
x \in L \Longleftrightarrow \forall u_{1}\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \forall u_{1} f\left(x, u_{1}\right) \in S A T \Longleftrightarrow \exists C \forall u_{1} C\left(f\left(x, u_{1}\right)\right)=1
$$

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P}$ /poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p} .(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)
Let $L \in \Pi_{2}^{p}$. Then, \exists a polytime TM M such that

$$
x \in L \Longleftrightarrow \forall u_{1} \exists u_{2} \text { such that } M\left(x, u_{1}, u_{2}\right)=1
$$

Define a related language L^{\prime}

$$
\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \exists u_{2} \text { s.t. } M\left(x, u_{1}, u_{2}\right)=1
$$

$L^{\prime} \in$ NP. Let f be the function reducing L^{\prime} to SAT.
Going back to L :

$$
\begin{aligned}
x \in L \Longleftrightarrow \forall u_{1}\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \forall u_{1} f\left(x, u_{1}\right) \in S A T \Longleftrightarrow & \exists C \forall u_{1} C\left(f\left(x, u_{1}\right)\right)=1 \\
& (\because \text { SAT } \in \mathrm{P} / \text { poly })
\end{aligned}
$$

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P}$ /poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p} .(\operatorname{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\operatorname{coC}$.)
Let $L \in \Pi_{2}^{p}$. Then, \exists a polytime TM M such that

$$
x \in L \Longleftrightarrow \forall u_{1} \exists u_{2} \text { such that } M\left(x, u_{1}, u_{2}\right)=1
$$

Define a related language L^{\prime}

$$
\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \exists u_{2} \text { s.t. } M\left(x, u_{1}, u_{2}\right)=1
$$

$L^{\prime} \in$ NP. Let f be the function reducing L^{\prime} to SAT.
Going back to L :

$$
\begin{aligned}
x \in L \Longleftrightarrow \forall u_{1}\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \forall u_{1} f\left(x, u_{1}\right) \in \text { SAT } \Longleftrightarrow & \exists C \forall u_{1} C\left(f\left(x, u_{1}\right)\right)=1 \\
& (\because \text { SAT } \in \mathrm{P} / \text { poly })
\end{aligned}
$$

Karp-Lipton Theorem

Theorem: If $\mathrm{NP} \subseteq \mathrm{P}_{/ \text {poly, }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: We will prove that if $S A T \in \mathrm{P}_{\text {/poly, }}$, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p}$. $(\mathrm{coC} \subseteq \mathrm{C} \Longrightarrow \mathrm{C}=\mathrm{coC}$.)
Let $L \in \Pi_{2}^{p}$. Then, \exists a polytime TM M such that

$$
x \in L \Longleftrightarrow \forall u_{1} \exists u_{2} \text { such that } M\left(x, u_{1}, u_{2}\right)=1
$$

Define a related language L^{\prime}

$$
\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \exists u_{2} \text { s.t. } M\left(x, u_{1}, u_{2}\right)=1
$$

$L^{\prime} \in N$. Let f be the function reducing L^{\prime} to $S A T$.
Going back to L :
Flaw: There might be a circuit C s.t. $C\left(f\left(x, u_{1}\right)\right)=1$ even if $f\left(x, u_{1}\right) \notin S A T$.

$$
\begin{aligned}
x \in L \Longleftrightarrow \forall u_{1}\left(x, u_{1}\right) \in L^{\prime} \Longleftrightarrow \forall u_{1} f\left(x, u_{1}\right) \in \text { SAT } \Longleftrightarrow & \exists C \forall u_{1} C\left(f\left(x, u_{1}\right)\right)=1 \\
& (\because \text { SAT } \in \mathrm{P} / \text { poly })
\end{aligned}
$$

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof:

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly, }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: Observation: If $S A T \in \mathrm{P} /$ poly, then a polysize circuit family $\left\{C_{n}\right\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ, if ϕ is satisfiable.

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly, }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: Observation: If $S A T \in \mathrm{P} /$ poly, then a polysize circuit family $\left\{C_{n}\right\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ, if ϕ is satisfiable.

Continuing with plugging:

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: Observation: If $S A T \in \mathrm{P} /$ poly, then a polysize circuit family $\left\{C_{n}\right\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ, if ϕ is satisfiable.

Continuing with plugging:

$$
x \in L \Longleftrightarrow \forall u_{1} f\left(x, u_{1}\right) \in S A T
$$

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: Observation: If $S A T \in \mathrm{P} /$ poly, then a polysize circuit family $\left\{C_{n}\right\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ, if ϕ is satisfiable.

Continuing with plugging:

$$
\begin{aligned}
x \in L & \Longleftrightarrow \forall u_{1} f\left(x, u_{1}\right) \in S A T \\
& \Longleftrightarrow \exists D \forall u_{1} D\left(f\left(x, u_{1}\right)\right) \text { is a satisfying assignment for } f\left(x, u_{1}\right)
\end{aligned}
$$

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: Observation: If SAT $\in \mathrm{P}_{/ \text {poly, }}$, then a polysize circuit family $\left\{C_{n}\right\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ, if ϕ is satisfiable.

Continuing with plugging:

$$
\text { Biconditional statement is true as } \exists D=C \text {. }
$$

$$
x \in L \Longleftrightarrow \forall u_{1} f\left(x, u_{1}\right) \in S A T
$$

$\Longleftrightarrow \exists D \forall u_{1} D\left(f\left(x, u_{1}\right)\right)$ is a satisfying assignment for $f\left(x, u_{1}\right)$

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: Observation: If SAT $\in \mathrm{P}_{/ \text {poly, }}$, then a polysize circuit family $\left\{C_{n}\right\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ, if ϕ is satisfiable.

Continuing with plugging:

$$
\text { Biconditional statement is true as } \exists D=C \text {. }
$$

$$
x \in L \Longleftrightarrow \forall u_{1} f\left(x, u_{1}\right) \in S A T
$$

$\Longleftrightarrow \exists D \forall u_{1} D\left(f\left(x, u_{1}\right)\right)$ is a satisfying assignment for $f\left(x, u_{1}\right)$
$\Longleftrightarrow \exists D \forall u_{1} M\left(x, u_{1}, D\right)=1$

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: Observation: If SAT $\in \mathrm{P}_{/ \text {poly, }}$, then a polysize circuit family $\left\{C_{n}\right\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ, if ϕ is satisfiable.

Continuing with plugging:

$$
\text { Biconditional statement is true as } \exists D=C \text {. }
$$

$$
x \in L \Longleftrightarrow \forall u_{1} f\left(x, u_{1}\right) \in S A T
$$

$\Longleftrightarrow \exists D \forall u_{1} D\left(f\left(x, u_{1}\right)\right)$ is a satisfying assignment for $f\left(x, u_{1}\right)$
$\Longleftrightarrow \exists D \forall u_{1} M\left(x, u_{1}, D\right)=1$
M outputs 1 iff $D\left(f\left(x, u_{1}\right)\right)$ is a satisfying assignment for $f\left(x, u_{1}\right)$.

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: Observation: If SAT $\in \mathrm{P}_{/ \text {poly, }}$, then a polysize circuit family $\left\{C_{n}\right\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ, if ϕ is satisfiable.

Continuing with plugging:

$$
\text { Biconditional statement is true as } \exists D=C \text {. }
$$

$$
x \in L \Longleftrightarrow \forall u_{1} f\left(x, u_{1}\right) \in S A T
$$

$\Longleftrightarrow \exists D \forall u_{1} D\left(f\left(x, u_{1}\right)\right)$ is a satisfying assignment for $f\left(x, u_{1}\right)$
$\Longleftrightarrow \exists D \forall u_{1} M\left(x, u_{1}, D\right)=1$

M outputs 1 iff $D\left(f\left(x, u_{1}\right)\right)$ is a satisfying assignment for $f\left(x, u_{1}\right)$.

Karp-Lipton Theorem

Theorem: If NP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof: Observation: If $S A T \in \mathrm{P} /$ poly, then a polysize circuit family $\left\{C_{n}\right\}$ s.t. $C_{|\phi|}(\phi)$ outputs a satisfying assignment for ϕ, if ϕ is satisfiable.

Continuing with plugging:

$$
\text { Biconditional statement is true as } \exists D=C \text {. }
$$

$$
x \in L \Longleftrightarrow \forall u_{1} f\left(x, u_{1}\right) \in S A T
$$

$\Longleftrightarrow \exists D \forall u_{1} D\left(f\left(x, u_{1}\right)\right)$ is a satisfying assignment for $f\left(x, u_{1}\right)$
$\Longleftrightarrow \exists D \forall u_{1} M\left(x, u_{1}, D\right)=1$ Moutputs 1 iff $D\left(f\left(x, u_{1}\right)\right)$ is a
Thus, $L \in \Sigma_{2}^{p}$. satisfying assignment for $f\left(x, u_{1}\right)$.

