Lecture 29

Uniform Circuits, TMs with Advice, Karp-Lipton Theorem
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Definition: Let 7, A : N — N be functions. A language L is in DTIME(7(n))/A(n), if 3 a T(n)-time

M M and sequence of strings {«, }, .« with a, € {0,1}*") such that Vx € {0,1}",

xel &= Mx,a)=1

Example: UHALT is has a linear time TM with advice strings of length 1.

TM M that decides UHALT on input x:

1) Rejects if x is not all 1s.

2) Accepts when x is all 1s it and only if advice is 1.
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Theorem: It NP C P/poly' then PH = 21;.
Proof: Observation: If SAT & P/poly' then a polysize circuit family {C, } s.t. C|¢|(¢) outputs a

satistying assignment for ¢, if @ is satistiable.

Continuing with plugging:

Blconditional statement ts true as dD = C.

x €L << Vu,flx,u) € SAT
<~ dDVu, D(x, Uy)) is a satistying assignment for f(x, u,)

. Moutputs 1 tFf D(f(x, 1)) is a

satisfying assignment for f(X, u;).
1%
[hus, L € 22.



